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Global trends 

1 Exploding renewables 
  Driven by sustainability 
  Enabled by policy and investment 

2 Migration to distributed arch 
  2-3x generation efficiency 
  Relief demand on grid capacity 



Source: Renewable Energy 
             Global Status Report, 2010 
Source: M. Jacobson, 2011 

Wind power over land (exc. Antartica)  
70 – 170 TW 

Solar power over land 
340 TW 

Worldwide 

energy demand: 
16 TW 

electricity demand: 
2.2 TW 

wind capacity (2009): 
159 GW 

grid-tied PV capacity (2009): 
21 GW 



High Levels of Wind and Solar PV Will 
Present an Operating Challenge! 

Source: Rosa Yang, EPRI 

Key challenge: uncertainty mgt 



Large-scale active network of DER 

DER: PVs, wind turbines, batteries, EVs, DR loads   



Large-scale active network of DER 

DER: PVs, wind turbines, batteries, EVs, DR loads   

Millions of active endpoints 
introducing rapid large !

random fluctuations !
in supply and demand!



Control challenges 

Need to close the loop 
  Real-time feedback control 
  Driven by uncertainty of renewables 

Scalability 
  Orders of magnitude more endpoints that can 

generate, compute, communicate, actuate 
  Driven by new power electronics, distributed arch 

Engineering + economics 
  Need interdisciplinary holistic approach 
  Power flow determined by markets as well as physics 



Current control 

local 

global 

slow fast 

relay 
system 

SCADA 
EMS 

•  centralized 
•  state estimation 
•  contingency analysis 
•  optimal power flow 
•  simulation 
•  human in loop •  decentralized 

•  mechanical 

mainly centralized, open-loop preventive, slow timescale 



Our approach 

local 

global 

relay 
system 

SCADA 
EMS 

endpoint based 
scalable control 

•  local algorithms 
•  global perspective 

scalable, decentralized, real-time feedback, sec-min timescale  

slow fast 



Our approach 

local 

global 

relay 
system 

SCADA 
EMS 

endpoint based 
scalable control 

•  local algorithms 
•  global perspective 

We have technologies to monitor/control 1,000x faster 
not the fundamental theories and algorithms 

slow fast 



Our approach 
Endpoint based control  

  Self-manage through local sensing, communication, 
control 

  Real-time, scalable, closed-loop, distributed, robust 

Local algorithms with global perspective 
  Simple algorithms  
  Globally coordinated 

Control and optimization framework 
  Systematic algorithm design 
  Clarify ideas, explore structures, suggest direction 

Ambitious, comprehensive, multidisciplinary 
Start with concrete relevant component projects 



Our approach: benefits 
Scalable, adaptive to uncertainty 

  By design 

Robust understandable global behavior 
  Global behavior of interacting local algorithms can be 

cryptic and fragile if not designed thoughtfully 

Improved reliability & efficiency 

Real-time price 
Flat Price, Scenario 1 
Flat Price, Scenario 2 



Sample projects 
Optimal power flow [Bose, Gayme, L, Chandy] 

  Motivation: core of grid/market operation, but slow 
& inefficient computation 

  Result: zero duality gap for radial networks 
  Impact: much faster and more efficient algorithm for 

global optimality to cope with renewable fluctuations 

Volt/VAR control [Farivar, L, Clarke, Chandy] 
  Motivation: static capacitor-based control cannot 

cope with rapid random fluctuations of renewables 
  Result: optimal real-time inverter-based feedback 

control  
  Impact: more reliable and efficient distribution 

network at high renewable penetration 



Sample projects 
Contract for wind [Cai, Aklakha, Chandy] 

  Motivation: wind producers may withhold 
generation to maximize profit 

  Result: simple condition on marginal imbalance 
penalty incentivizes max wind production 

  Impact: max renewable power and min market 
manipulation 

Procurement strategy [Nair, Aklakha, Wierman] 
  Motivation: how to optimally procure uncertain 

energy 
  Result: optimal procurement strategy in terms of 

reserve levels 

  Impact: Effectiveness of intra-day markets 



Sample projects 
EV charging [Gan, Topcu, L] 

  Motivation: uncoordinated charging will produce 
unacceptable voltage fluctuations and overload 

  Result: decentralized scheduling that is optimal 
(valley-filling) 

  Impact: can accommodate more EV on same grid 
infrastructure 

Frequency-based load control [Zhao, Topcu, L] 
  Motivation: frequency regulation only by adapting 

generation can be insufficient 
  Result: decentralized load control algorithm for 

supply-demand balancing and frequency regulation 

  Impact: more responsive frequency regulation in the 
presence of uncertain supply 



Sample projects 
Demand response [Na, Chen, L] 

  Motivation: to maintain power balance  
  Result: decentralized, scalable, incentive compatible 

day-ahead scheduling algorithm 
  Deterministic case 

Stochastic case [Libin Jiang, L] 

  Next 
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  Results 



Features to capture 
Wholesale markets 

  Day ahead, real-time balancing  
Renewable generation 

  Non-dispatchable 

Demand response 
  Real-time control (through pricing) 

day ahead balancing renewable 

utility 

users 

utility 

users 



Model: user 
Each user has 1 appliance (wlog) 

  Operates appliance with probability 

  Attains utility ui(xi(t)) when consumes xi(t) 

Demand at t:  

!i =
1     wp  " i (t) 
0    wp   1!" i (t)
"
#
$

  D(t) := !i xi (t)
i
!

xi (t) ! xi (t) ! xi (t)      xi (t)
t
" # Xi



P d (t),   cd P d (t)( ),  co !x(t)( )

Model: LSE (load serving entity) 

Power procurement 
  Renewable power: 

  Random variable, realized in real-time 

  Day-ahead power: 

  Control, decided a day ahead 

  Real-time balancing power: 

    

•  Use as much renewable as possible 
•  Optimally provision day-ahead power 
•  Buy sufficient real-time power to balance demand 

capacity 

energy 



Simplifying assumption 

 No network constraints 



Questions 
Day-ahead decision 

  How much power       should LSE buy from day-
ahead market? 

Real-time decision (at t-) 
  How much      should users consume, given 

realization of wind power      and     ? 

How to compute these decisions distributively? 
How does closed-loop system behave ? 

t- t – 24hrs 

available info: 

decision: 



Our approach 
Real-time (at t-) 

  Given      and realizations of        , choose 
optimal                             to max social 
welfare, through DR 

Day-ahead 
  Choose optimal       that maximizes expected 

optimal social welfare 

xi
* = xi

* Pd;Pr,!i( )

t- 

Pr,!i

t – 24hrs 

available info: 

decision: 

Pd



Optimal demand response 

Model 

Results 
  Without time correlation: distributed alg 
  With time correlation: distributed alg 
  Impact of uncertainty 



No time correlation: T=1 
Each user has 1 appliance (wlog) 

  Operates appliance with probability 

  Attains utility ui(xi(t)) when consumes xi(t) 

Demand at t:  

!i =
1     wp  " i (t) 
0    wp   1!" i (t)
"
#
$

  D(t) := !i xi (t)
i
!

xi (t) ! xi (t) ! xi (t)      xi (t)
t
" # Xi



Welfare function 
Supply cost 

Welfare function (random) 

c Pd, x( ) = cd P d( )+ co !(x)( )0
Pd + cb !(x)"P d( )+

!(x) := !i xi
i
" #P r

W Pd, x( ) = !iui
i
! (xi )" c Pd, x( )

excess demand 

user utility supply cost 



Welfare function 
Supply cost 

c Pd, x( ) = cd P d( )+ co !(x)( )0
Pd + cb !(x)"P d( )+

!(x) := !i xi
i
" #P r excess demand 

!(x)cd Pd( ) cd !(x)( )0
Pd cb !(x)"Pd( )+



Welfare function 
Supply cost 

Welfare function (random) 

c Pd, x( ) = cd P d( )+ co !(x)( )0
Pd + cb !(x)"P d( )+

!(x) := !i xi
i
" #P r

W Pd, x( ) = !iui
i
! (xi )" c Pd, x( )

excess demand 

user utility supply cost 



Optimal operation 

Welfare function (random) 

Optimal real-time demand response 

Optimal day-ahead procurement 

W Pd, x( ) = !iui
i
! (xi )" c Pd, x( )

x* Pd( )   :=   arg   max
x
W Pd, x( ) given realization 

       of  P r ,!i

Pd
*   :=  arg  max

Pd
 EW Pd, x

* Pd( )( )

max
Pd

 E max
x
W Pd, x( )Overall problem: 
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Optimal operation 

Welfare function (random) 

Optimal real-time demand response 

Optimal day-ahead procurement 

W Pd, x( ) = !iui
i
! (xi )" c Pd, x( )

x* Pd( )   :=   arg   max
x
W Pd, x( ) given realization 

       of  P r ,!i

Pd
*   :=  arg  max

Pd
 EW Pd, x

* Pd( )( )

max
Pd

 E max
x
W Pd, x( )Overall problem: 



Real-time DR vs scheduling 

max
Pd

 E max
x
W Pd, x( )  Real-time DR: 

  Scheduling: max
Pd

max
x

 E W Pd, x( )

Theorem 
Under appropriate assumptions: 

Wreal!time  DR
* =Wscheduling

* +
N! 2

1+ N!
" 2

benefit increases with 
•  uncertainty    
•  marginal real-time cost  

! 2

!



Algorithm 1 (real-time DR) 

Active user i computes  
  Optimal consumption 

LSE computes 
  Real-time “price” 
  Optimal day-ahead energy to use  
  Optimal real-time balancing energy 

xi
*

µb
*

yo
*

yb
*

max
Pd

 E max
x
W Pd, x( )

real-time DR 



Active user i : xi
k+1 = xi

k +! ui ' xi
k( )!µb

k( )( )
xi

xi

inc if marginal utility > real-time price 

LSE :  µb
k+1 = µb

k +! ! xk( )" yok " ybk( )( )
+

inc if total demand > total supply 

Algorithm 1 (real-time DR) 

•  Decentralized 
•  Iterative computation at t- 



Theorem: Algorithm 1 
Socially optimal  

  Converges to welfare-maximizing DR 
  Real-time price aligns marginal cost of supply 

with individual marginal utility 

Incentive compatible 
      max i’s surplus given price     

x* = x* Pd( )

Algorithm 1 (real-time DR) 

µb
*xi

*

µb
* = c ' Pd,! x*( )( ) = ui ' xi*( )



More precisely: µb
* !"xc Pd,# x*( )( )

pricing = marginal cost 

Algorithm 1 (real-time DR) 

µb
*

= co ' ! x*( )( )                if  0<! x*( ) < Pd
= cb ' ! x*( )"Pd( )         if  Pd<! x*( )
# co ' ! x*( )( ),cb ' ! x*( )"Pd( )$
%

&
'    if  ! x*( ) = Pd

(

)

*
*

+

*
*



Theorem: Algorithm 1 

Marginal costs, optimal day-ahead and 
balancing power consumed: 

Algorithm 1 (real-time DR) 

cb
' yb

*( ) = co' yo*( )+µo
*

µo
* =

!W
!Pd

Pd
*( )

if  Pd
* > 0



Algorithm 2 (day-ahead procurement) 

Optimal day-ahead procurement 
max
Pd

  EW Pd, x
* Pd( )( )

Pd
m+1 = Pd

m +! m µo
m ! cd ' Pd

m( )( )( )
+

LSE:  

calculated from Monte Carlo 
simulation of Alg 1 

(stochastic approximation)  



Algorithm 2 (day-ahead procurement) 

Optimal day-ahead procurement 
max
Pd

  EW Pd, x
* Pd( )( )

LSE:  

µo
m =

!W
!Pd

Pd
m( )

µb
m = µo

m + co
' yo

m( )

Given !m,Pr
m :   

Pd
m+1 = Pd

m +! m µo
m ! cd ' Pd

m( )( )( )
+



Theorem 

Algorithm 2 converges a.s. to optimal   
for appropriate stepsize 

Pd
*

Algorithm 2 (day-ahead procurement) 

! k



Optimal demand response 

Model 

Results 
  Without time correlation: distributed alg 
  With time correlation: distributed alg 
  Impact of uncertainty 



General T case 
Each user has 1 appliance (wlog) 

  Operates appliance with probability 

  Attains utility ui(xi(t)) when consumes xi(t) 

Demand at t:  

!i =
1     wp  " i (t) 
0    wp   1!" i (t)
"
#
$

  D(t) := !i xi (t)
i
!

xi (t) ! xi (t) ! xi (t)      xi (t)
t
" # Xi

     Coupling across time  
 Need state 



Time correlation 

  Example: EV charging 
  Time-correlating constraint: 

  Day-ahead decision and real-time 
decisions 

  (1+T)-period dynamic programming 

Day-ahead 

available info: 

decision: 

t- t = 1,2,…, T 

Remaining 
demand 



Algorithm 3 (T>1)  

  Main idea 
  Solve deterministic problem in each step using 

conditional expectation of Pr  (distributed) 
  Apply decision at current step 

  One day ahead, decide Pd
* by solving 

  At time t-, decide x*(t) by solving 



Theorem: performance 
  Algorithm 3 is optimal in special cases 

    

Algorithm 3 (T>1) 

J * ! J A3 !
1

T ! t +1
 

t=1

T

! ! 2 (t)



Impact of renewable on welfare 

Pr (t;a,b) := a !µ(t)+ b !V (t)

mean 

Renewable power: 

zero-mean RV 

Optimal welfare of (1+T)-period DP 

W * a,b( )



Impact of renewable on welfare 

Theorem  
  Cost increases in var of  

              increases in a, decreases in b  
              increases in s  (plant size) 

W * a,b( )
Pr

Pr (t;a,b) := a !µ(t)+ b !V (t)

W * s, s( )


