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| < Global trends

1 Exploding renewables
B Driven by sustainability
B Enabled by policy and investment

2 Migration to distributed arch

B 2-3Xx generation efficiency
B Relief demand on grid capacity



Wind power over land (exc. Antartica)

70-170 TW

Solar power over land
340 TW

Worldwide

energy demand:
16 TW

electricity demand:
22TW

wind capacity (2009):
159 GW

grid-tied PV capacity (2009):
21 GW

Source: Renewable Energy
Global Status Report, 2010
Source: M. Jacobson, 2011



@ Key challenge: uncertainty mgt

- i, €

=°  High Levels of Wind and Solar PV WIII
' Present an Operatlng Challenge'
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K§ Large-scale active network of DER

capacity

total

completion

#nodes . ) remarks
per node | capacity time
SCE 500 1MW | 500 MW 2015 gCE Commercial - Rooftop
olar
CA 175,000 10 KW 1.75 GW 2016 CA Solar Initiative
SCE | 400,000 okW | 800 MW - 10% penetration of SCE
residential customers
CA Million Solar Roofs
CA 1,000,000 3 kW 3 GW 2017 Initiative
CA Renewable Portfolio
CA -- -- 25 GW 2020 Standard
Obama’s goal for clean
us -- -- 3TW 2035 energy

DER: PVs, wind turbines, batteries, EVs, DR loads




@ Large-scale active network of DER

#nodes

[ co— \w

SCE Willioas of active endpoints onep
introducing rapid large
random fluctuations
in supply and demand S
CA Portfolio
us

g ama’s goal for clean
/I/rW energy
\/

DER: PVs, wind turbines, batteries, EVs, DR loads



\4 Control challenges

Need to close the loop

B Real-time feedback control
B Driven by uncertainty of renewables

Scalability

B Orders of magnitude more endpoints that can
generate, compute, communicate, actuate

B Driven by new power electronics, distributed arch

Engineering + economics
B Need interdisciplinary holistic approach
B Power flow determined by markets as well as physics



@ Current control

global | SCADA
EMS

* centralized

« state estimation
 contingency analysis
« optimal power flow

* simulation .
« human in loop » decentralized
* mechanical
relay
local system
>
slow fast

mainly centralized, open-loop preventive, slow timescale



@ Our approach

global | SCADA
EMS
relay
local system R
slow fast

scalable, decentralized, real-time feedback, sec-min timescale



@ Our approach

global | SCADA
EMS
relay
local system R
slow fast

We have technologies to monitor/control 1,000x faster
not the fundamental theories and algorithms



‘L Our approach

Endpoint based control

B Self-manage through local sensing, communication,
control
B Real-time, scalable, closed-loop, distributed, robust

Local algorithms with global perspective

B Simple algorithms
B Globally coordinated

Control and optimization framework

B Systematic algorithm design
B Clarify ideas, explore structures, suggest direction

Ambitious, comprehensive, multidisciplinary
Start with concrete relevant component projects




< Our approach: benefits

Scalable, adaptive to uncertainty
B By design

Robust understandable global behavior

B Global behavior of interacting local algorithms can be
cryptic and fragile if not designed thoughtfully

Improved reliability & efficiency

Distribution of System State (Solar vs Load)




T Sample projects

Optimal power flow [Bose, Gayme, L, Chandy]

Motivation: core of grid/market operation, but slow
& inefficient computation

Result: zero duality gap for radial networks

Impact: much faster and more efficient algorithm for
global optimality to cope with renewable fluctuations

VO|t/VAR control [Farivar, L, Clarke, Chandy]

Motivation: static capacitor-based control cannot
cope with rapid random fluctuations of renewables

Result: optimal real-time inverter-based feedback
control

Impact: more reliable and efficient distribution
network at high renewable penetration



T Sample projects

Contract for wind [cai, Aklakha, Chandy]

Motivation: wind producers may withhold
generation to maximize profit

Result: simple condition on marginal imbalance
penalty incentivizes max wind production

Impact: max renewable power and min market
manipulation

Procurement strategy [Nair, Aklakha, Wierman]

Motivation: how to optimally procure uncertain
energy

Result: optimal procurement strategy in terms of
reserve levels

Impact: Effectiveness of intra-day markets



T Sample projects

EV charging [Gan, Topcu, L]

Motivation: uncoordinated charging will produce
unacceptable voltage fluctuations and overload

Result: decentralized scheduling that is optimal
(valley-filling)

Impact: can accommodate more EV on same grid
infrastructure

Frequency-based load control [zhao, Topcy, L]

Motivation: frequency regulation only by adapting
generation can be insufficient

Result: decentralized load control algorithm for
supply-demand balancing and frequency regulation

Impact: more responsive frequency regulation in the
presence of uncertain supply



@ Sample projects

Demand response [Na, Chen, L]

B Motivation: to maintain power balance

B Result: decentralized, scalable, incentive compatible
day-ahead scheduling algorithm

B Deterministic case

Stochastic case [Libin Jiang, L]
B Next



r@ Outline

Optimal demand response

B Model
B Results



\d Features to capture

Wholesale markets
B Day ahead, real-time balancing

Renewable generation
B Non-dispatchable

Demand response
B Real-time control (through pricing)

utility utility




| < Model: user

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(?)

B Attains utility u,(x(f)) when consumes x(¢)

x; (1) =x,(t)=Xx,(t) Exi(t)ZXi

Demand at ¢:

D(1) ="y 8,x,(1)

0, =1

1 wp (1)

0 wp 1-m,(1)



@ Model: LSE (load serving entity)

Power procurement
capacity

B Renewable power: P.(¢), c, (Pr(t))=0
[0 Random variable, realized in real-time A/‘/energy
m Day-ahead power: P (1), ¢,(P (1)), c,(Ax(1))
[0 Control, decided a day ahead

B Real-time balancing power: P,(?), cb(Pb(t))
O Py(t) = D(t) =P, (t) =P (1)

« Use as much renewable as possible
* Optimally provision day-ahead power
 Buy sufficient real-time power to balance demand



T Simplifying assumption

[0 No network constraints



| € Questions

Day-ahead decision

B How much power £, should LSE buy from day-
ahead market?

Real-time decision (at ¢-)

B How much X; should users consume, given
realization of wind power P. and O, ?

How to compute these decisions distributively?
How does closed-loop system behave ?

t — 24hrs t-
|

available info: ui(.)a'ﬂ:jaFr ) 51‘»Pr»Pd

. * %k
decision: P, X



‘L Our approach

Real-time (at 7-)
m Given P, and realizations of P,0,, choose
optimal x; =x, (P,;P.,8,) to max social
welfare, through DR

Day-ahead

B Choose optimal P, that maximizes expected
optimal social welfare

t — 24hrs t-
|

available info: U,-(')»JT,-aFr ) 51‘»Pr»Pd

decision: P, X;



< Optimal demand response

Results
B Without time correlation: distributed alg
B With time correlation: distributed alg
B Impact of uncertainty



@ No time correlation: T=1

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(?)
B Attains utility u,(x(f)) when consumes x(¢)

x; (1) = x,(1) = X,(1) M?

Demand at ¢:
1 wp (1)

D(1) = 0. X, 0. =+
(1) E X, (1) 10 wp 1-z0)




r@ Welfare function

Supply cost
c(P,x)=c,(P,)+¢c, (M) +c,(Ax)-P,).

A(x) = Eéixi -P < excess demand



@ Welfare function

Supply cost
c(P,x)=c,(P,)+¢c, (M) +c,(Ax)-P,).
A(x) = Eél.xi -P < excess demand
¢,(P) ,(AW), &(AW-R),




@ Welfare function

Supply cost
c(P,x)=c,(P,)+¢c, (M) +c,(Ax)-P,).
A(x) = Eél.xi -P < excess demand

Welfare function (random)

Eéu(x) c )
1 Y

user utility  supply cost



< Optimal operation

Welfare function (random)

Eéu(x) c )

Optimal real-time demand response

given realization
mfle(Pd,x) of P



< Optimal operation

Welfare function (random)
W (P, x)= Eéiui(xi) —c(P,,x)

Optimal real-time demand response

x (P) = arg max W (P,,x) giver;fre;a)lriz,g:[ion



| & Optimal operation

Welfare function (random)

Eéu(x) c x)

Optimal real-time demand response

x (P) = arg max W (P,,x) giver;fre;a)lriz,g:[ion

Optimal day-ahead procurement

*

P, := arg max EW(Pd,x*(Pd))

Overall problem: max E max W (P, , x)



(& Real-time DR vs scheduling

Real-time DR: max E maxW (P,,x)

P, X
Scheduling: maxmax E W (P, x)
Theorem
Under appropriate assumptions:
" " Ny>
|44 =W O

real—time DR scheduling + 1+ N)/

benefit increases with
. uncertainty o~
* marginal real-time cost Y



@ Algorlthm 1 (real-time DR)

max E maxW (P,,x)

By L |
|
real-time DR

Active user i computesx,
B Optimal consumption

LSE computes
B Real-time “price” u,



@ Algorlthm 1 (real-time DR)

Active useri:  x* =(xik +V(Mi'(xz-k)—ﬂll§))j

l

inc if marginal utility > real-time price

LSE : T =(M§+V(A(xk)—y§—y£f))+

inc if total demand > total supply

 Decentralized
* |terative computation at ¢-



@ Algorlthm 1 (real-time DR)

Theorem: Algorithm 1
Socially optimal
B Converges to welfare-maximizing DR X =X (Pd)

B Real-time price aligns marginal cost of supply
with individual marginal utility

iy =¢'(PoA(x))=u'(x7)




@/

& Algorlthm 1 (real-time DR)
More precisely: Mb EaxC(Pd’A(x*))

pricing = marginal cost

X)) if 0<A(x")<P,

(
u=c, (A(x)-P) if P<A(x)




@ Algorlthm 1 (real-time DR)

Theorem: Algorithm 1

Marginal costs, optimal day-ahead and
balancing power consumed:

¢, (v)=c, (v )+m, it B >0

1

. AW
MO:an(Pd)




@ Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement
max EW(P,,x"(F,))

LSE: P = (Pd’" +y" () —c, '(Pdm)))

1

calculated from Monte Carlo
simulation of Alg 1
(stochastic approximation)

+



@ Algorithm 2 (day-ahead procurement)
Optimal day-ahead procurement

max EW(P,,x (P,))

LSE: P = (Pd’" +y" () —c, '(Pdm)))

+

Given 6",P": wu, = 32/ (Pdm)
d

w =+, ()



@ Algorlthm 2 (day-ahead procurement)

Theorem

Algorithm 2 converges a.s. to optimal P,
for appropriate stepsize y'



< Optimal demand response

Results
O
B With time correlation: distributed alg
B Impact of uncertainty



@ General T case

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(?)

B Attains utility u,(x(f)) when consumes x(¢)

x; (1) =x,(t)=Xx,(t) Exi(t)ZXi

Demand at ¢:

D(1):==» 8x,(1) &

Coupling across time

=» Need state

1 wp (1)

0 wp 1-m,(1)



N

S Time correlation

Example: EV charging .

B Time-correlating constraint: in(’)ZRwVi
Day-ahead decision and real-time
decisions

Day-ahead - t=1,2,..., T
! ! ! ! ! ! >
available info: %, ("), F.(*) B.(2), F; (1), R, ({)\
x; (1), Vi .
Remaining
demand

decision: P, (1),Vt

(1+T)-period dynamic programming



< Algorithm 3 (1>1)

Main idea

B Solve deterministic problem in each step using
conditional expectation of P, (distributed)

B Apply decision at current step

One day ahead, decide P, by solving
maXEW(P (@), x(¥); B(T)) si. Ex(r) = R,

At time ¢-, decide x*(?) by solving
max i w (P, (@), x@); B(x|0) st i x.(T) = R, (1)




| & Algorithm 3 (1>1)

Theorem: performance

Welfare

Algorithm 3 is optimal in special cases

T
. 1
J —J" < E o’ (1
~ T —t+1 )

500 _ . . .
Welfare with heuristic agorithm

— o Welfare with idedized agorithm
1000 6
-1500 /
2000 s
2500 /
-3000/

1

2 3 4
. penetration of renewable energy



< Impact of renewable on welfare

Renewable power:
P(t;a,b):=a - u(t)+b-V(t)

.

mean zero-mean RV

Optimal welfare of (1+T)-period DP
W*(a,b)



< Impact of renewable on welfare

P(t;a,b):=a - u(t)+b-V(t)

Theorem
Cost increases in var of b,

W' (a,b) increases in a, decreases in b

W' (s,s) increases in s (plant size)




