Optimal Demand Response

Libin Jiang Steven Low

Computing + Math Sciences
Electrical Engineering
Caltech

Oct 2011

Caltech smart grid research

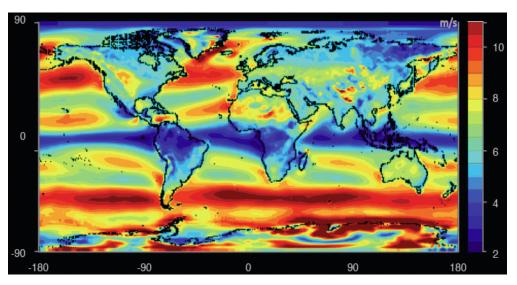
Optimal demand response

1 Exploding renewables

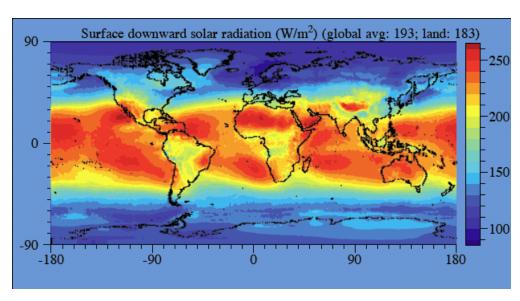
- Driven by sustainability
- Enabled by policy and investment

2 Migration to distributed arch

- 2-3x generation efficiency
- Relief demand on grid capacity



Wind power over land (exc. Antartica) 70 – 170 TW



Solar power over land 340 TW

Worldwide

energy demand: 16 TW

electricity demand: 2.2 TW

wind capacity (2009): 159 GW

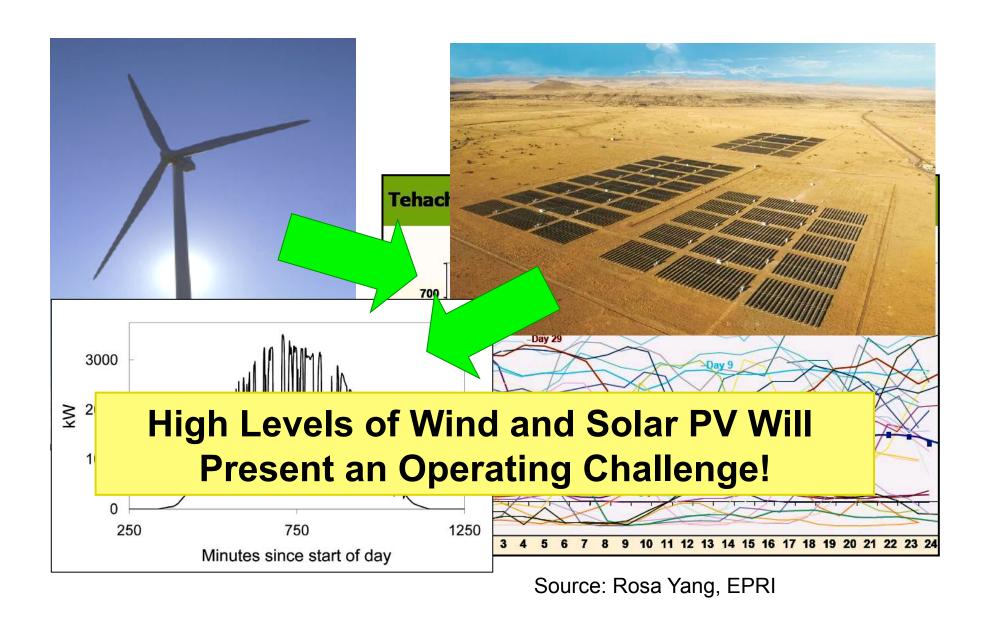
grid-tied PV capacity (2009): 21 GW

Source: Renewable Energy

Global Status Report, 2010

Source: M. Jacobson, 2011

Key challenge: uncertainty mgt

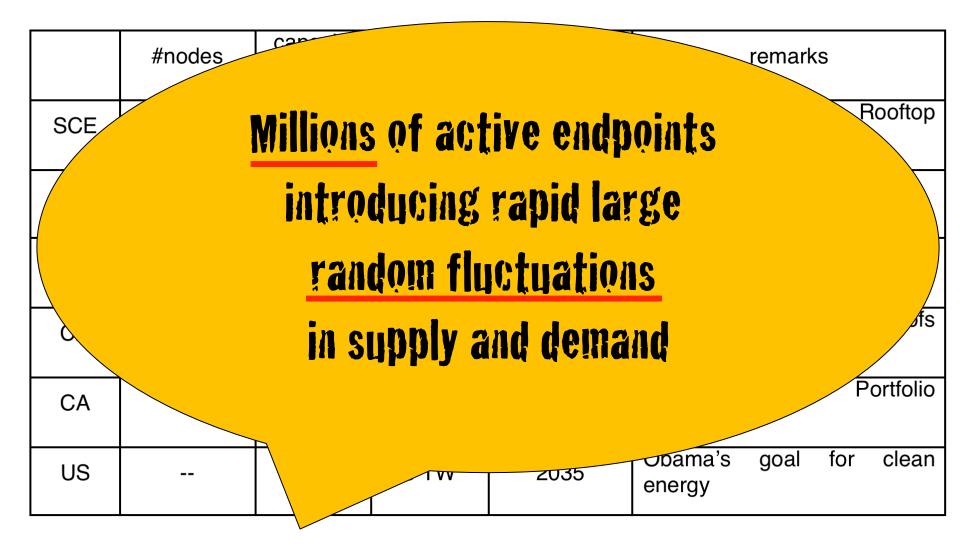


Large-scale active network of DER

	#nodes	capacity per node	total capacity	completion time	remarks
SCE	500	1 MW	500 MW	2015	SCE Commercial Rooftop Solar
CA	175,000	10 kW	1.75 GW	2016	CA Solar Initiative
SCE	400,000	2 kW	800 MW		10% penetration of SCE residential customers
CA	1,000,000	3 kW	3 GW	2017	CA Million Solar Roofs Initiative
CA			25 GW	2020	CA Renewable Portfolio Standard
US			3 TW	2035	Obama's goal for clean energy

DER: PVs, wind turbines, batteries, EVs, DR loads

Large-scale active network of DER



DER: PVs, wind turbines, batteries, EVs, DR loads

Need to close the loop

- Real-time feedback control
- Driven by uncertainty of renewables

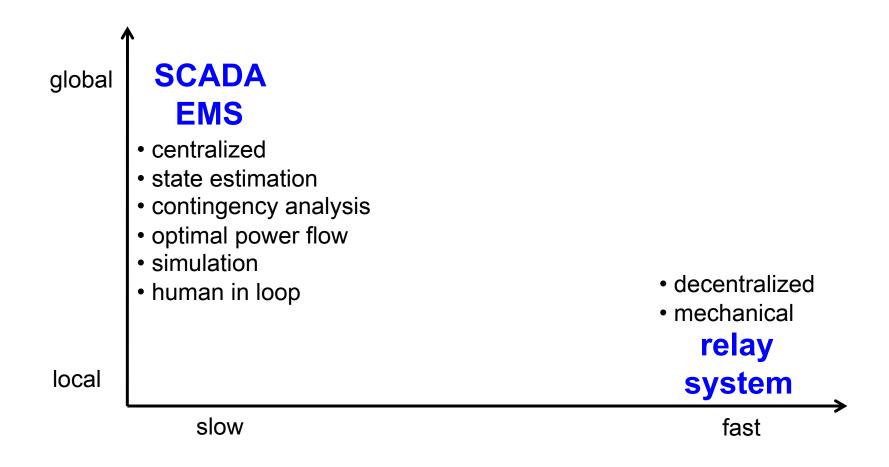
Scalability

- Orders of magnitude more endpoints that can generate, compute, communicate, actuate
- Driven by new power electronics, distributed arch

Engineering + economics

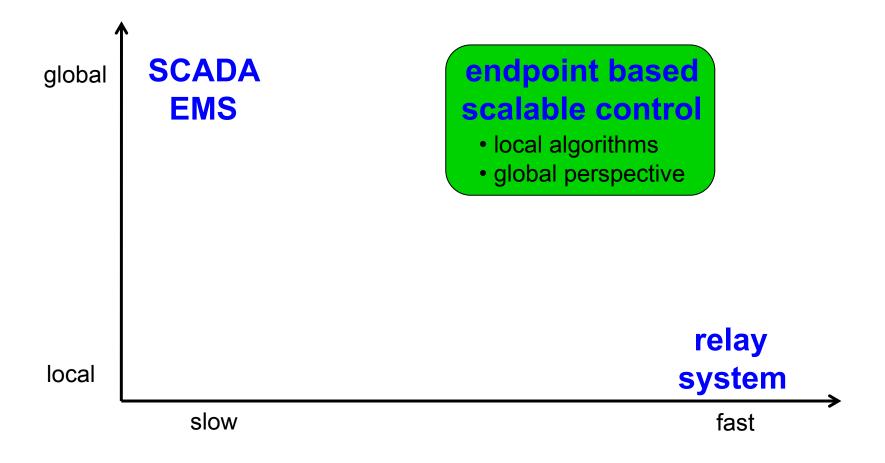
- Need interdisciplinary holistic approach
- Power flow determined by markets as well as physics

Current control



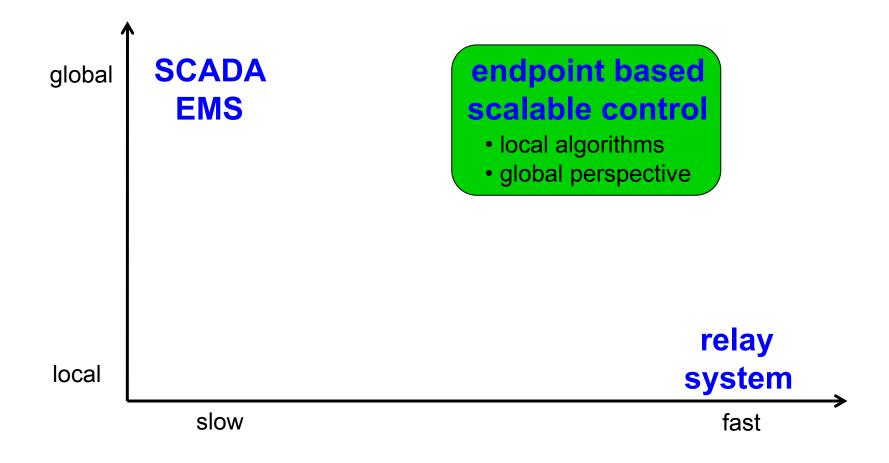
mainly centralized, open-loop preventive, slow timescale

Our approach



scalable, decentralized, real-time feedback, sec-min timescale

Our approach



We have technologies to monitor/control 1,000x faster not the fundamental theories and algorithms

Endpoint based control

- Self-manage through local sensing, communication, control
- Real-time, scalable, closed-loop, distributed, robust

Local algorithms with global perspective

- Simple algorithms
- Globally coordinated

Control and optimization framework

- Systematic algorithm design
- Clarify ideas, explore structures, suggest direction

Ambitious, comprehensive, multidisciplinary Start with concrete relevant <u>component</u> projects

Our approach: benefits

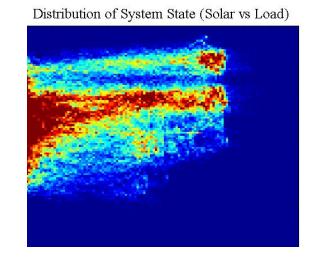
Scalable, adaptive to uncertainty

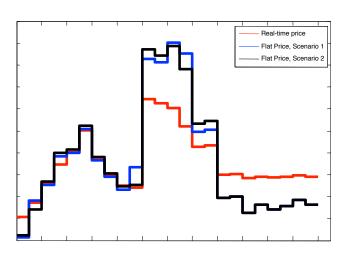
By design

Robust understandable global behavior

Global behavior of interacting local algorithms can be cryptic and fragile if not designed thoughtfully

Improved reliability & efficiency





Optimal power flow [Bose, Gayme, L, Chandy]

- Motivation: core of grid/market operation, but slow & inefficient computation
- Result: zero duality gap for radial networks
- **Impact**: much faster and more efficient algorithm for global optimality to cope with renewable fluctuations

Volt/VAR control [Farivar, L, Clarke, Chandy]

- **Motivation**: static capacitor-based control cannot cope with rapid random fluctuations of renewables
- Result: optimal real-time inverter-based feedback control
- **Impact**: more reliable and efficient distribution network at high renewable penetration

Contract for wind [Cai, Aklakha, Chandy]

- Motivation: wind producers may withhold generation to maximize profit
- Result: simple condition on marginal imbalance penalty incentivizes max wind production
- **Impact**: max renewable power and min market manipulation

Procurement strategy [Nair, Aklakha, Wierman]

- Motivation: how to optimally procure uncertain energy
- Result: optimal procurement strategy in terms of reserve levels
- **Impact**: Effectiveness of intra-day markets

EV charging [Gan, Topcu, L]

- **Motivation**: uncoordinated charging will produce unacceptable voltage fluctuations and overload
- Result: decentralized scheduling that is optimal (valley-filling)
- Impact: can accommodate more EV on same grid infrastructure

Frequency-based load control [Zhao, Topcu, L]

- Motivation: frequency regulation only by adapting generation can be insufficient
- Result: decentralized load control algorithm for supply-demand balancing and frequency regulation
- Impact: more responsive frequency regulation in the presence of uncertain supply

Sample projects

Demand response [Na, Chen, L]

- **Motivation**: to maintain power balance
- **Result**: decentralized, scalable, incentive compatible day-ahead scheduling algorithm
- Deterministic case

Stochastic case [Libin Jiang, L]

Next

Caltech smart grid research

Optimal demand response

- Model
- Results

Wholesale markets

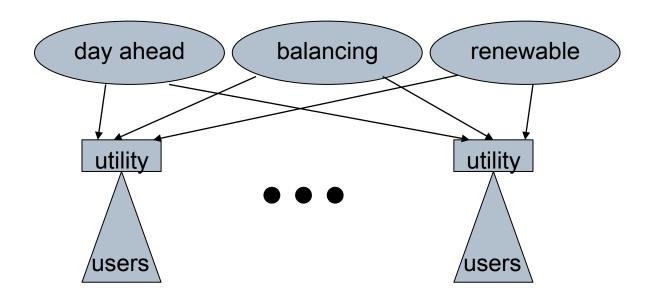
Day ahead, real-time balancing

Renewable generation

Non-dispatchable

Demand response

Real-time control (through pricing)



Each user has 1 appliance (wlog)

- lacksquare Operates appliance with probability $\pi_i(t)$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \le x_i(t) \le \overline{x}_i(t)$$
 $\sum_t x_i(t) \ge \overline{X}_i$

Demand at t:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

Model: LSE (load serving entity)

Power procurement

- capacity Renewable power: $P_r(t)$, $c_r(P_r(t)) = 0$ energy □ Random variable, realized in real-time
- Day-ahead power: $P_d(t)$, $c_d(P_d(t))$, $c_o(\Delta x(t))$
 - Control, decided a day ahead
- Real-time balancing power: $P_h(t)$, $c_h(P_h(t))$

$$\square P_b(t) = D(t) - P_r(t) - P_d(t)$$

- Use as much renewable as possible
- Optimally provision day-ahead power
- Buy sufficient real-time power to balance demand

Simplifying assumption

■ No network constraints

Questions

Day-ahead decision

lacktriangle How much power P_d should LSE buy from dayahead market?

Real-time decision (at t-)

■ How much x_i should users consume, given realization of wind power P_r and δ_i ?

How to compute these decisions distributively? How does closed-loop system behave?

Our approach

Real-time (at *t*-)

Given P_d and realizations of P_r, δ_i , choose optimal $x_i^* = x_i^* \left(P_d; P_r, \delta_i \right)$ to max social welfare, through DR

Day-ahead

lacktriangle Choose optimal P_d^* that maximizes expected optimal social welfare

Optimal demand response

Model

Results

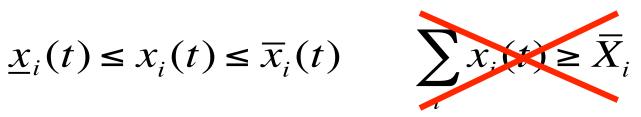
- Without time correlation: distributed alg
- With time correlation: distributed alg
- Impact of uncertainty

No time correlation: T=1

Each user has 1 appliance (wlog)

- lacksquare Operates appliance with probability $\pi_i(t)$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \le x_i(t) \le \overline{x}_i(t)$$



Demand at t:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

Welfare function

Supply cost

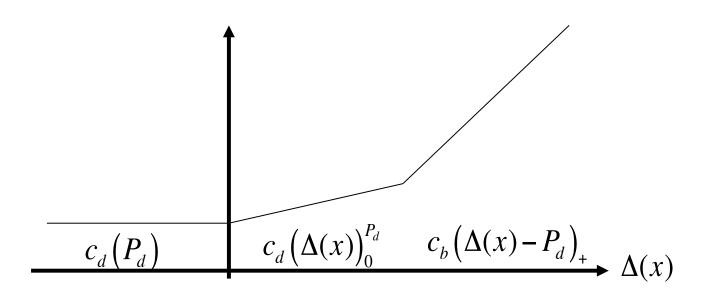
$$c(P_d, x) = c_d(P_d) + c_o(\Delta(x))_0^{P_d} + c_b(\Delta(x) - P_d)_+$$

$$\Delta(x) := \sum_{i} \delta_{i} x_{i} - P_{r} \quad \leftarrow \quad \text{excess demand}$$

Welfare function

Supply cost

$$c(P_d, x) = c_d(P_d) + c_o(\Delta(x))_0^{P_d} + c_b(\Delta(x) - P_d)_+$$
$$\Delta(x) := \sum \delta_i x_i - P_r \qquad \text{excess demand}$$



Welfare function

Supply cost

$$c(P_d, x) = c_d(P_d) + c_o(\Delta(x))_0^{P_d} + c_b(\Delta(x) - P_d)_+$$
$$\Delta(x) := \sum_i \delta_i x_i - P_r \qquad \text{excess demand}$$

Welfare function (random)

$$W(P_d, x) = \sum_{i} \delta_i u_i(x_i) - c(P_d, x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
user utility supply cost

Optimal operation

Welfare function (random)

$$W(P_d, x) = \sum_i \delta_i u_i(x_i) - c(P_d, x)$$

Optimal real-time demand response

$$\max_{x} W(P_d, x) \qquad \text{given realization} \\ \text{of } P_r, \delta_i$$

Optimal operation

Welfare function (random)

$$W(P_d, x) = \sum_{i} \delta_i u_i(x_i) - c(P_d, x)$$

Optimal real-time demand response

$$x^*(P_d) := \arg \max_{x} W(P_d, x) \qquad \underset{\text{of } P_r, \delta_i}{\text{given realization}}$$

Optimal operation

Welfare function (random)

$$W(P_d, x) = \sum_{i} \delta_i u_i(x_i) - c(P_d, x)$$

Optimal real-time demand response

$$x^*(P_d) := \arg \max_{x} W(P_d, x) \qquad \underset{\text{of } P_r, \delta_i}{\text{given realization}}$$

Optimal day-ahead procurement

$$P_d^* := \arg \max_{P_d} EW(P_d, x^*(P_d))$$

Overall problem: $\max_{P_d} E \max_{x} W(P_d, x)$

Real-time DR vs scheduling

- $\max_{P_d} E \max_{x} W(P_d, x)$ □ Real-time DR:
- $\max_{P_d} \max_{x} E W(P_d, x)$ ☐ Scheduling:

Theorem

Under appropriate assumptions:

$$W_{real-time\ DR}^* = W_{scheduling}^* + \frac{N\gamma^2}{1 + N\gamma}\sigma^2$$

benefit increases with

- uncertainty σ^2
- marginal real-time cost γ

Algorithm 1 (real-time DR)

$$\max_{P_d} E \max_{x} W(P_d, x)$$
real-time DR

Active user i computes x_i^*

Optimal consumption

LSE computes

Real-time "price" μ_b^*

Algorithm 1 (real-time DR)

Active user
$$i$$
: $x_i^{k+1} = \left(x_i^k + \gamma \left(u_i'(x_i^k) - \mu_b^k\right)\right)_{\underline{x}_i}^{x_i}$

inc if marginal utility > real-time price

LSE:
$$\mu_b^{k+1} = (\mu_b^k + \gamma (\Delta(x^k) - y_o^k - y_b^k))_+$$

inc if total demand > total supply

- Decentralized
- Iterative computation at t-

Theorem: Algorithm 1

Socially optimal

- Converges to welfare-maximizing DR $x^* = x^* (P_d)$
- Real-time price aligns marginal cost of supply with individual marginal utility

$$\mu_b^* = c'(P_d, \Delta(x^*)) = u_i'(x_i^*)$$

Algorithm 1 (real-time DR)

More precisely: $\mu_b^* \in \partial_x c(P_d, \Delta(x^*))$ pricing = marginal cost

$$\mu_b^* \begin{cases} = c_o ' (\Delta(x^*)) & \text{if } 0 < \Delta(x^*) < P_d \\ = c_b ' (\Delta(x^*) - P_d) & \text{if } P_d < \Delta(x^*) \\ \in \left[c_o ' (\Delta(x^*)), c_b ' (\Delta(x^*) - P_d) \right] & \text{if } \Delta(x^*) = P_d \end{cases}$$

Theorem: Algorithm 1

Marginal costs, optimal day-ahead and balancing power consumed:

Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement

$$\max_{P_d} EW(P_d, x^*(P_d))$$

LSE:
$$P_d^{m+1} = \left(P_d^m + \gamma^m \left(\mu_o^m - c_d'(P_d^m)\right)\right)_+$$

calculated from Monte Carlo simulation of Alg 1 (stochastic approximation)

Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement

$$\max_{P_d} EW(P_d, x^*(P_d))$$

LSE:
$$P_d^{m+1} = (P_d^m + \gamma^m (\mu_o^m - c_d'(P_d^m)))_+$$

Given
$$\delta^m, P_r^m$$
: $\mu_o^m = \frac{\partial W}{\partial P_d} (P_d^m)$

$$\mu_b^m = \mu_o^m + c_o'(y_o^m)$$

Theorem

Algorithm 2 converges a.s. to optimal P_d^* for appropriate stepsize γ^k

Optimal demand response

Model

Results

- Without time correlation: distributed alg
- With time correlation: distributed alg
- Impact of uncertainty

General T case

Each user has 1 appliance (wlog)

- lacksquare Operates appliance with probability $\pi_i(t)$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \le x_i(t) \le \overline{x}_i(t)$$
 $\sum_t x_i(t) \ge \overline{X}_i$

Coupling across time

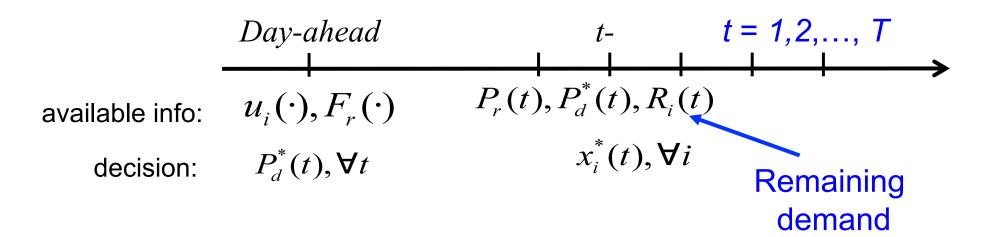
→ Need state

Demand at t:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

Time correlation

- Example: EV charging
 - Time-correlating constraint: $\sum_{t=1}^{i} x_i(t) \ge R_i, \forall i$
- Day-ahead decision and real-time decisions



□ (1+T)-period dynamic programming

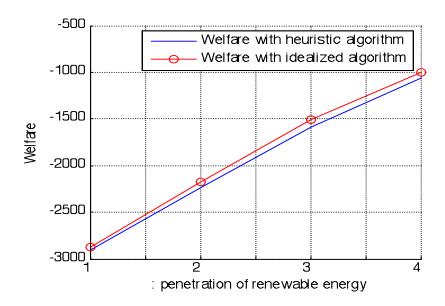
- Main idea
 - Solve deterministic problem in each step using conditional expectation of P_r (distributed)
 - Apply decision at current step
- \square At time *t*-, decide $x^*(t)$ by solving

$$\max_{x} \sum_{\tau=t}^{T} W\left(P_{d}^{*}(\tau), x(\tau); \overline{P}_{r}(\tau \mid t)\right) \quad s.t. \sum_{\tau=t}^{T} x_{i}(\tau) \geq R_{i}(t)$$

Algorithm 3 (T>1)

Theorem: performance

□ Algorithm 3 is optimal in special cases



Impact of renewable on welfare

Renewable power:

Optimal welfare of (1+T)-period DP

$$W^*(a,b)$$

Impact of renewable on welfare

$$P_r(t;a,b) := a \cdot \mu(t) + b \cdot V(t)$$

Theorem

- \square Cost increases in var of P_r
- \square $W^*(a,b)$ increases in a, decreases in b
- \square $W^*(s,s)$ increases in s (plant size)