

Cyber-Physical Architecture for the Power Grid of 2020

Jeffrey D. Taft, PhD
Chief Architect, Cisco Connected Energy Networks

12 Dec 2012

© 2012 Cisco and/or its affiliates. All rights reserved.

Advanced Grid Management Issues

- Grid stabilized by inherent rotational inertia
- Dispatchable generation
- Passive loads
- Moderate digital control is adequate

- Reduced rotational inertia due to change in energy source mix
- Stochastic generation (DER/VER)
- Transactive loads and markets
- Grid control as we know it is not adequate

distribution automation: old and new

A Wave of Investment in DA is Coming

- North America presently has about \$300 B of aging or obsolete distribution assets
- New investment in DA is coming as AMI winds down:
 - o EEI: \$20 B-\$23 B /year through 2030
 - o EPRI: \$335 B \$476 B over 20 years -> \$17B \$24B /year
 - GreenTech Media: \$3 B /year by 2015
- Comms portion historically about 15% but may go higher for new DA
 - New DA comms more complex
 - Also add in DI platform elements
- Multiple factors driving this investment:
 - Renewed industry focus on operational excellence ("smart grid" is toxic)
 - o Regulatory mandates in renewables integration and other functions
 - Response to recent weather events -> renewed focus on resilience
 - Aging and/or obsolete assets

Basic Distribution Automation

- Voltage Regulation
 - OL tap changers and SLDC's
 - Voltage regulators
 - Cap banks for voltage support
- Flow Control and Sectionalizing
 - Feeder switches and breakers
 - Sectionalizers (remotely operated but manually controlled)
 - Feeder inter-tie switches (remotely operated but manually controlled) or just manual

- Protection
 - Breakers with digital relays
 - Reclosers, Fuses
- Distribution SCADA (if any)
 - V/I line sensors
 - FCl's
 - Low bandwidth comms
- Outage Management
 - Siloed
 - IVR (maybe)
- FISR (manual/HIL)

Basic Distribution Automation Summary

Many devices are manually controlled or control is based on purely local factors.

Much of the control is merely "on-off" and on very slow time scales.

Networking requirements for basic DA are very modest and low cost tend to dominate.

Advanced Distribution Automation

- All of the basic DA plus...
 Local Balancing
- Advanced Regulation
 - IVVC: UPF, CVR
 - Load Freq Regulation
 - Inverter Control for fast VAr regulation
- Responsive Loads
- Stabilization and Synchronization
 - DSTATCOM
 - DER PCC Sync
 - D level PMU's

- - DER integration
 - EV charge control
 - LEN power balance
 - Load modulation (DC, EV)
 - Multi-tier VPP/DR
 - Markets and distrib markets
- Microgrids
- Protection and Flow Control
 - N-way power flow incl. loops
 - D level DG teleprotection

emerging grid control issues

Issue: Faster System Dynamics

Standard Grid Management	Advanced Grid Management
Distribution V/VAR Control (LTC/CAP's)	Distribution V/VAR (DG/DS/Load Modulation)
Response times: 5 minutes to hours	Response times: msec to sub-second
Transmission Level Stabilization (Ancillary Services)	Transmission Level Stabilization (PMU/FACTS)
Response times 6-30 minutes	Response times < 1 second
Distribution Level Stabilization	Distribution Level Stabilization (DSTATCOM)
Not typically done	Response times 32-300 msec
Distribution Fault Isolation (Manual Control)	Distribution Fault Isolation (FLISR)
Response times: minutes to hours	Response times: sub-second to sub-minute

Response times, sample rates, latencies all are shortening by two or more orders of magnitude.

"Human-in-the-loop" is not sustainable going forward.

Issue: Hidden Coupling via the Grid

- Electrical physics rules the grid shaped by grid connectivity
- Business models and software cannot change this
- Must be taken into account in control design to avoid unintended consequences
 - IVVR/DR example
 CVR/PV example
 market/responsive load example
- Becomes important as new rollouts of smart devices scale to full deployment
- Implications for architecture, design, and control

Issue: Synchronized Measurement

- Traditional Distribution SCADA does round-robin polling of endpoints
 - o 4 second cycle to collect all points is common today, no synchronization
- Measures RMS voltage, RMS current, real and reactive power
 - Optionally, a few harmonics for power quality
 - No phasor measurement; data is time skewed
- All this is changing for advanced DA:
 - Need for phase measurements
 - Therefore, need synchronized measurement (synchrophasors)
 - Some can be done in substation, but this is not adequate for many functions
 - Need distributed, synchronized SCADA

Issue: New Instability Sources

- Variable Energy Resources; reduction in rotational inertia in grid
- Some elements may reside outside of the utility: responsive loads, DG/DER
- Energy Services Organizations operating outside grid control regime
- Inter-tier control loops
- Active load interactions with grid control systems can be unstable; volatility of grid with price sensitive loads; markets as control elements: flash crashes

"Volatility of Power Grids Under Real Time Pricing", www.mit.edu/~mardavij/publications_files/Volatility.pdf

Issue: Emerging Structural Chaos

ultra-large scale power grid control architecture

What to Do

- Regularize the structure
 - Eliminate "tier hopping" control
 - Avoid closing loops around multiple tiers
 - Use the layer architectural paradigm
- Introduce layered optimization
 - Can match inherent grid hierarchy
 - Can match functional boundaries
- Distribute the control
 - Flows logically from the first two steps
 - Preserves much traditional control
 - Addresses new control needs

1. Regularize the Structure

2. Introduce Layered Optimization

- Decompose problem into distributed solvable problems coordinated by a master problem -> Network Utility Maximization
 - ☐ Master and sub-problem solvers communicate across layers via signaling
 - o Master: system-wide control solution; sub-problems: "selfish" endpoints
 - Primal decomposition: master directs sub problems by allocating resources
 - o Dual decomposition: master directs sub problems by providing pricing
- Solve federation, disaggregation, and complex constraint fusion problems
- Extend to multiple layers to fit the utility hierarchical model
- Append constraints, dynamics at each level
- Modular approach to ultra-large scale control

Daniel Palomar and Mung Chiang, "Alternative Distributed Algorithms for Network Utility Maximization: Framework and Applications," **IEEE Transactions on Automatic Control,** Vol. 52, No 12., December 2007

3. Distribute the Control

- Layered Optimization
 Decomposition leads directly to distributed control
- Layers can be matched to grid tiers
- May be more than one horizontal control tier
- Scalable and robust structure
- Sub-problems may be "selfish"
 - Local goals
 - Local constraints and states
 - Bounded local autonomy

DI Allocation; Dynamic Re-allocation

- Decentralized control
 - Remote apps
- Distributed Control
 - Remote, cooperating apps
- Static DI element allocation
 - Not 1:1 per substation
- Dynamic topology
 - Must change over time

Layer and Sub-Tier Structure

Intra-Tier Practical Structure

Benefits of Distributed Approach

Low Latency Response

□ A distributed intelligence architecture can provide the ability to process data and provide it to the end device without a round trip back to a control center.

Low Sampling Time Skew

■ Multiple data collection elements can minimize first-to-last sample time skew for better system state snapshots

Scalability

■ No single choke point for data acquisition or processing; analytics at the lower levels of a hierarchical distributed system can be processed and passed on to higher levels in the hierarchy

Robustness

- Local autonomous operation
- ☐ Continued operation in the presence of network fragmentation
- Graceful system performance and functional degradation in the face of failures

Ease of incremental rollout

Issues Posed by Distributed Approach

- Device/system/application management smart devices residing in substations, on poles, in underground structures represent significant cost to visit. It is impractical to send a person out to any of these devices to install a patch, reset a processor, or upgrade an application. Zero-touch deployment and remote management are necessary.
- Harder to design, commission, and diagnose distributed intelligence systems can inherently involve a larger number of interfaces and interactions than centralized systems, making design, test, and installation more complex than with centralized systems.
- More complex communications architectures required distributed intelligence involves more peer-to-peer interaction than with centralized systems, so that the communication network must support the associated peer-to-peer communications.

Use Case Ensemble

- The "killer app" is grid control. It has many sub-use cases, most well-known and more coming as the utilities are pushed (as in *driven*) by the regulators to meet renewable portfolio and other goals by 2020.
- The sub-use cases include:
 - VER integration (wind, solar, etc)
 - Wide area measurement, protection, and closed loop control
 - DER integration (distribution level, incl VER DG)
 - o Energy storage integration
 - Responsive loads (command, price, and /or system frequency)
 - Integrated Volt/VAr control for V reg,
 CVR, UPF in the presence of DER and DR
 - Advanced distribution fault isolation/service restoration
 - o Electric Vehicle (EV) charge management

- Third party energy services integration
- Inverter control for fast VAr regulation
- Local energy network and microgrid power balance and flow control; load power modulation (EV's, DC's)
- Multi-tier virtual power plants
- Energy/power market interactions for prosumers; transactive energy and distributed markets
- Electronic grid stabilization (FACTS for transmission; DSTATCOM for distribution)

Grid Control Macro Requirements

- Increasing need for low latency electronic stabilization in the presence of fast grid dynamics
- Need for wide area measurement; grid state observability; deep situational awareness -> sensing
- Evolving cross tier and vertically integrated control
- Need for:
 - Control federation
 - Control disaggregation
 - Constraint fusion

- Agility
- Robustness
- Stability

thank you