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@Large active network of DERs

#nodes capacity total. com.pletlon remarks
per node | capacity time
SCE 500 1MW | 500 MW 2015 | SCE  Commercial - Rooftop
Solar
CA 175,000 10 kW 1.75 GW 2016 CA Solar Initiative
SCE | 400,000 okW | 800 MW . 10% penetration of ~ SCE
residential customers
CA Million Solar Roofs
CA 1,000,000 3 kKW 3 GW 2017 Initiative
CA Renewable Portfolio
CA -- -- 25 GW 2020 Standard
Obama’s goal for clean
US -- -- 3TW 2035 energy

DER: PVs, wind turbines, batteries, EVs, DR loads
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@ Outline

Engineering issues

B Key element: architecture
[0 Some lessons from telephony - Internet

B Examples
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@ Network Architecture

Architecture is the single most important
element that underlies Internet’s
explosive growth

B Good architecture accelerates innovation, bad
freezes it

Yet, there is no formal theory nor
systematic design principle for network
architecture




T Example architectures
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T Impact of Good Architecture

Internet has revolutionized communications,
serving as a platform for innovation with impacts

far beyond communications
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@ Elements of architecture

Layering as optimization decomposition
B Modularity, abstraction, evolvability

Constraints that deconstrain

B Minimum set of constraints that free up
design choices everywhere else

Robust yet fragile

B Careful tradeoffs of robustness against
anticipated uncertainties with fragility
elsewhere

John Doyle, Caltech



@Layermg as optimization decomposition

Each layer designed separately and
evolves asynchronously

Each layer optimizes certain
objectives

application «—— | Minimize response time (web layout)...

transport |+ Maximize utility (TCP/AQM)

network — Minimize path costs (IP)

link — Reliability, channel access, ...

physical — Minimize SIR, max capacities, ...




@Layermg as optimization decomposition

- Each layer is abstracted as an optimization

problem

- Operation of a layer is a distributed solution

« Results of one problem (layer) are parameters
of others

- Operate at different timescales

application
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network

link

physical
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@Layermg as optimization decomposition

- Each layer is abstracted as an optimization
problem

- Operation of a layer is a distributed solution

« Results of one problem (layer) are parameters
of others

- Operate at different timescales

application
transport OO0 Network  global optimization problem
0 Layers subproblems
network OO0 Layering decomposition methods
link [0 Interface functions of primal or dual vars
physical But .... (caveat)




@ Watershed moment

Power network will undergo similar architectural
transformation that phone network went through

In the last two decades

Tesla: multi-phase AC

1888

1876

Deregulation — ==y ?
|

started

Both started as natural monopolies

I Both provided a single commodity

Both grew rapidly through two WWs

1980-90s

—

1980-90s

Bell: telephone

Deregulation

started \

1969: Convergence
DARPAnNet to Internet




@ Differences ... lots of them

Need for extreme reliability
B Similar to telephony
B But many sectors that can benefit from less

Huge capital investment, long lifetime

B Simple and stable core, intelligent periphery
B Telephony vs Internet

Cyber-physical system
B Physical laws that cannot be designed away

B Abstractions/device breakthroughs that
insulate higher layer design from physics ?



@ Lessons from Internet

Layering as optimization decomposition
B Modularity, abstraction, evolvability

Constraints that deconstrain

B Minimum set of constraints that free up
design choices everywhere else

Robust yet fragile

B Careful tradeoffs of robustness against
anticipated uncertainties with fragility
elsewhere

John Doyle, Caltech
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T Implications

Current control paradigm works well today

B Centralized, open-loop, human-in-loop, worst-case
preventive

B Low uncertainty, few active assets to control
B Schedule supplies to match loads

Future needs

B Closing the loop, e.qg. real-time DR, Volt/VAR
control, EV/storage mgt

B Fast computation to cope with rapid, random, large
fluctuations in supply, demand, voltage, freq

B Simple algorithms to scale to large networks of
active DER



@ Our focus: control & optimization

Different applications
m Distributed Volt/VAR control
B PEV charging coordination
B Large-scale real-time demand response
B Economic dispatch, unit commitment

Different timescales

B Seconds
B Minutes
B Hours

Interactions between algorithms across
timescales



@ Our approach

Endpoint based control
B Self-manage through local sensing, communication, control
B Real-time, scalable, closed-loop, distributed, robust

Local algorithms with global perspective
B Holistic framework with global objectives
B Decompose global objectives into local algorithms

Control and optimization framework

B Theoretical foundation for a holistic framework that
integrates engineering + economics

B Systematic algorithm design
B Understandable global behavior



T Key technical challenges
Nonconvexity
B Convex relaxations
Large scale
B Distributed algorithms

Uncertainty
B Risk-limiting approach
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