Scalable Distributed Control of Network of DERs

Steven Low

Computing + Math Sciences
Electrical Engineering
Caltech

December 2012

Large active network of DERs

	#nodes	capacity per node	total capacity	completion time	remarks
SCE	500	1 MW	500 MW	2015	SCE Commercial Rooftop Solar
CA	175,000	10 kW	1.75 GW	2016	CA Solar Initiative
SCE	400,000	2 kW	800 MW		10% penetration of SCE residential customers
CA	1,000,000	3 kW	3 GW	2017	CA Million Solar Roofs Initiative
CA			25 GW	2020	CA Renewable Portfolio Standard
US			3 TW	2035	Obama's goal for clean energy

DER: PVs, wind turbines, batteries, EVs, DR loads

Large active network of DERs

DER: PVs, wind turbines, FACTS, EVs, batteries, DR loads

Economic issues

- Distributed generation, interaction of different technology uptakes, business models
- Distribution market

Engineering issues

- Key element: architecture
 - □ Some lessons from telephony → Internet
- Examples

Network Architecture

- Architecture is the single most important element that underlies Internet's explosive growth
 - Good architecture accelerates innovation, bad freezes it
- ☐ Yet, there is no formal theory nor systematic design principle for network architecture

Example architectures

Impact of Good Architecture

Internet has revolutionized communications, serving as a platform for innovation with impacts far beyond communications

Telephony

Music

TV & home theatre

Finding your way

Mail

Library at your finger tip

Friends

Games

Cloud computing

Elements of architecture

Layering as optimization decomposition

Modularity, abstraction, evolvability

Constraints that deconstrain

Minimum set of constraints that free up design choices everywhere else

Robust yet fragile

 Careful tradeoffs of robustness against anticipated uncertainties with fragility elsewhere

Layering as optimization decomposition

- Each layer designed separately and evolves asynchronously
- Each layer optimizes certain objectives

Layering as optimization decomposition

- Each layer is abstracted as an optimization problem
- Operation of a layer is a distributed solution
- Results of one problem (layer) are parameters of others
- Operate at different timescales

Layering as optimization decomposition

- Each layer is abstracted as an optimization problem
- Operation of a layer is a distributed solution
- Results of one problem (layer) are parameters of others
- Operate at different timescales

application

transport

network

link

physical

| Network global optimization problem subproblems
| Layers subproblems |
| Layering decomposition methods |
| Interface functions of primal or dual vars |
| But (caveat)

Watershed moment

Power network will undergo similar <u>architectural</u> <u>transformation</u> that phone network went through in the last two decades

Differences ... lots of them

Need for extreme reliability

- Similar to telephony
- But many sectors that can benefit from less

Huge capital investment, long lifetime

- Simple and stable core, intelligent periphery
- Telephony vs Internet

Cyber-physical system

- Physical laws that cannot be designed away
- Abstractions/device breakthroughs that insulate higher layer design from physics ?

Lessons from Internet

Layering as optimization decomposition

Modularity, abstraction, evolvability

Constraints that deconstrain

Minimum set of constraints that free up design choices everywhere else

Robust yet fragile

 Careful tradeoffs of robustness against anticipated uncertainties with fragility elsewhere

Large active network of DERs

DER: PVs, wind turbines, FACTS, EVs, batteries, DR loads

Current control paradigm works well today

- Centralized, open-loop, human-in-loop, worst-case preventive
- Low uncertainty, few active assets to control
- Schedule supplies to match loads

Future needs

- Closing the loop, e.g. real-time DR, Volt/VAR control, EV/storage mgt
- Fast computation to cope with rapid, random, large fluctuations in supply, demand, voltage, freq
- Simple algorithms to scale to large networks of active DER

Our focus: control & optimization

Different applications

- Distributed Volt/VAR control
- PEV charging coordination
- Large-scale real-time demand response
- Economic dispatch, unit commitment

Different timescales

- Seconds
- Minutes
- Hours

Interactions between algorithms across timescales

Endpoint based control

- Self-manage through local sensing, communication, control
- Real-time, scalable, closed-loop, distributed, robust

Local algorithms with global perspective

- Holistic framework with global objectives
- Decompose global objectives into local algorithms

Control and optimization framework

- Theoretical foundation for a holistic framework that integrates engineering + economics
- Systematic algorithm design
- Understandable global behavior

Key technical challenges

Nonconvexity

Convex relaxations

Large scale

Distributed algorithms

Uncertainty

Risk-limiting approach

